

Технология получения метил-трет-бутилового эфира (МТБЭ) ОАО НИИ "Ярсинтез"

ОАО НИИ "Ярсинтез" (ранее НИИМСК) занимается технологией получения высокооктановых эфирных компонентов бензинов с 1973 г. За это время разработано несколько технологий получения высокооктановых компонентов: метил-трет-бутилового эфира (МТБЭ), метил-трет-амилового эфира (МТАЭ / ТАМЭ), этил-трет-бутилового эфира (ЭТБЭ) и других эфиров.

Для получения МТБЭ мы можем предложить наиболее совершенную технологическую схему с реализацией принципа "каталитической дистилляции", позволяющую иметь максимальную производительность и эффективность.

Процесс производства МТБЭ основан на реакции селективного взаимодействия изобутилена, входящего в состав ББФ, с метанолом:

$$(CH_3)_2C=CH_2 + CH_3OH \Leftrightarrow CH_3-O-C(CH_3)_3$$
 изобутилен метанол МТБЭ

Технология ОАО НИИ "Ярсинтез" характеризуется:

- высокой эффективностью;
- гибкостью по используемому сырью и получаемым продуктам;
- легкой управляемостью;
- широким диапазоном устойчивой работы;
- легкостью обслуживания, просто и быстро проводятся операции загрузки и выгрузки катализатора.

Преимущества достигаются за счет:

- реализации технологического приема "каталитическая дистилляция" наиболее эффективного для проведения обратимых реакций, особенно экзотермических и самого экономичного;
- использования оригинального формованного катализатора сочетающего высокую каталитическую активность и свойства эффективной массообменной насадки;
- формованный катализатор позволил реализовать "каталитическую дистилляцию" самым доступным и дешевым методом.

1. Требования к качеству сырья.

Технология позволяет перерабатывать любое изобутиленсодержащее сырье с содержанием изобутилена до 60 %.

1.1. Требования к исходной C_4 -фракции

Рекомендуемое содержание C_3 -углеводородов — не более 0,5 % масс.; Рекомендуемое содержание бутадиена-1,3 - не более 0,5 % масс. Ограничения касаются содержания примесей отравляющих катализатор:

- азотсодержащие примеси основного характера в расчете на азот не более 0,0001 % мас;
- -щелочь отс.
- 1.2. Метанол соответствует ГОСТ 2222-95, высший сорт.

2. Качество продукции.

2.1. Товарный МТБЭ соответствует требованиям ТУ 38.103704-90 с изм.1,2,3,4,5,6,7 марка A.

Показатели	марка А	марка Б	марка В
Массовая доля метил-трет-бутилового эфира*, %, не менее	98,0	96,0	94,0
Массовая доля спиртов (метанола и трет- бутанола), %, не более	1,5	2,5	4,0
Массовая доля углеводородов С4 и С8, %, не более	1,5	1,5	3,0
Массовая доля влаги, %, не более	0,10	0,10	0,10
Механические примеси	отс.	отс.	отс.

2.2. Отработанная С4-фракция.

Содержание, % мас., не более:

- изобутилен 1,0 (гарантируемое) / $0,1\div0,5$ (фактическое);
- метанол 0,01;
- МТБЭ 0,01;

3. Катализаторы синтеза МТБЭ.

В процессе используются ионитные формованные катализаторы КИФ и КУ-2ФПП разработанные в ОАО НИИ "Ярсинтез".

Характеристика формованных катализаторов

Показатели	КУ-2ФПП			КИФ	
	марка А	марка А1	марка А2	марка А1	марка А2
Внешний вид	Гранулы в форме цилиндров		в форме		в форме ндров
Гранулометрический состав, мм - диаметр гранул - длина - диаметр отверстия - толщина стенки, не менее	6-10 6-15 - -	9-13 8-15 3-6 2,0	11-16 10-20 6-9 2,5	5-8 5-15 - -	2,5-4,0 3-15 -
Полная статическая обменная емкость, мг-экв/г, не менее	2,5	2,5	2,5	3,5	3,5
Каталитическая активность, %, не менее	55	55	55	70	75
Насыпная плотность, не более, г/см ³	0,6	0,6	0,6	0,75	0,75
Массовая доля влаги, не более, %	30	30	30	30-60	30-60

4. Описание процесса.

Синтез МТБЭ протекает в мягких условиях (температура 50÷80 °C, давление 6÷12 ата).

Технология процесса ОАО НИИ «Ярсинтез» основана на использовании специально разработанных для нее формованных катализаторов КИФ-Т и КУ-2ФПП.

Технология отличается надежностью и простотой (см. рисунок 1) и включает:

- узел синтеза и выделения МТБЭ;

решать вопрос конструкции реакционной зоны.

- узел очистки отработанной С4-фракции от метанола и рекуперации метанола. Синтез и выделение МТБЭ осуществляется в реакционно-ректификационном аппарате, состоящем из двух ректификационных и одной реакционной зон. Особенностью технологии процесса является использование крупногранулированного формованного катализатора. Катализатор совмещает высокие кислотно-каталитические свойства и свойства массообменной насадки с высокими гидродинамическими показателями, что позволяет эффективно

Благодаря оригинальному катализатору эффективно реализована технология «каталитической дистилляции», основанная на противотоке реагентов и внутреннем теплосъеме, позволяющая преодолеть термодинамические ограничения и использовать теплоту экзотермической реакции для непрерывного

разделения и вывода продуктов. Конверсия изобутилена превышает 99%. Концентрация целевого эфира в товарном продукте может составлять более 99 %.

5. Описание технологической схемы.

- Принципиальная технологическая схема процесса получения МТБЭ представлена на рисунке 1.
- Исходная С4-фракция и метанол поступают в реактор P-1, предназначенный для синтеза основного количества эфира.
- Реактор Р-1 адиабатического типа. В зависимости от концентрации изобутилена в исходной С4-фракции, тепло реакции в реакторе Р-1 расходуется на разогрев реакционной массы или дополнительно на испарение части реакционной массы. Процесс испарения контролируется давлением в реакторе. Реактор Р-1 представляет собой полый цилиндрический аппарат, заполненный катализатором.
- Реакционная масса выводится из реактора P-1 с верха аппарата одним или двумя потоками: в паровой и жидкой фазе.
- Реакционно-ректификационный аппарат К-3 включает три зоны:
- верхнюю ректификационную зону (для отделения непрореагировавших углеводородов C_4 , от метанола и эфиров);

- среднюю реакционно-ректификационную зону, заполненную катализатором (для синтеза эфиров и их вывода из зоны реакции).
- нижнюю ректификационную зону (для отделения МТБЭ от углеводородов С4 и метанола).

Катализатор в аппарате К-3 расположен в виде слоев на опорнораспределительных тарелках специальной конструкции.

Реакционная масса из реактора P-1 поступает в аппарат K-3 под слой катализатора. Наверх катализатора в K-3 подается метанол. Сверху аппарата K-3 отбирается С4-фракция, которая подается в колонну K-4 водной отмывки углеводородов от метанола. Кубовый продукт колонны K-3 - товарный МТБЭ выводится с установки.

В верхнюю часть колонны К-4 подается вода. Сверху колонны К-4 отбирается отработанная С4-фракция. Промывная вода с метанолом из куба колонны К-4 подается в качестве питания в колонну К-5, предназначенную для отгонки метанола от воды.

Метанол, отбираемый с верха колонны K-5, возвращается в емкость со свежим метанолом. Фузельная вода из куба колонны K-5 подается в верхнюю часть колонны K-4.

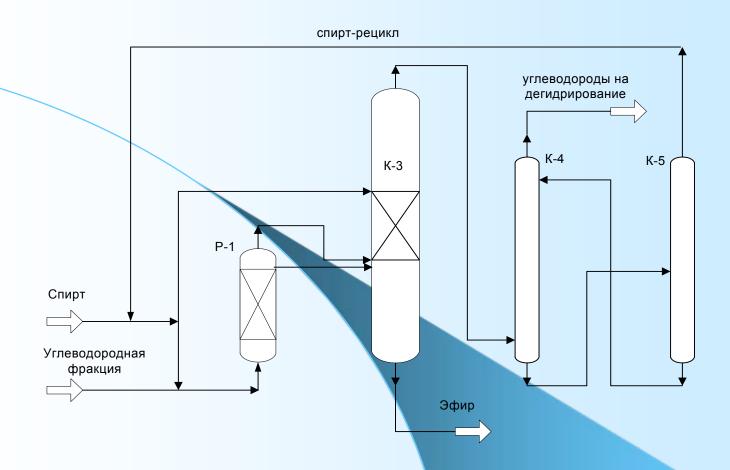


Рис. 1. Принципиальная технологическая схема получения высокооктановых эфиров

6. Сведения об отходах, стоках и выбросах с установки.

В процессе получения эфиров образуются стоки:

-Фузельная вода (постоянный сброс в количестве 10÷20 кг/т МТБЭ) с составом:

- метанол, мг/л, не более	100
- формиат натрия, мг/л, не более	350
- ХПК бихроматн., мг/л, не более	250
- БПК, мг/л, не более	160

-Сток пригоден для направления на биоочистные сооружения. Технологические вредные выбросы в атмосферу отсутствуют.

7. Материальное исполнение.

В связи с повышенной коррозионной агрессивностью используемого катализатора реактор P-1, реакционную и нижнюю ректификационную зоны реакционно-ректификационного аппарата рекомендуется выполнить из нержавеющей стали марки 12X18H10T.

Остальное технологическое оборудование выполняется из углеродистой стали.

8. Площадь промышленной площадки.

Установка синтеза эфиров в предлагаемом варианте достаточно компактна и размещается на площади 25х45 м.

9. Эксплуатационные затраты.

Расходные показатели на 1 т МТБЭ:

Показатели	С4-фракция с содержанием изобутилена 17 %	С4-фракция с содержанием изобутилена 44 %
- изобутан-изобутиленовая фракция, т в т.ч. изобутилен	3,76 0,64	1,41 0,64
- метанол, т	0,37	0,36
- катализатор, кг. сух.	0,35	0,15
- пар (6 ата), т	0,8-1,1	0,28
- оборотная вода*, м ³	19÷3 5	19÷35

^{* -} в зависимости от типа теплообменников (воздушные, водяные).

10. Преимущества технологии ОАО НИИ "Ярсинтез".

Предлагаемая технология ОАО НИИ "Ярсинтез" основана на свойствах формованных катализаторов, которые производятся только в России.

ОАО НИИ «Ярсинтез» может предложить схему организации производства эфиров с использованием другой технологической схемы, например:

- использование трубчатого (изотермических) реакторов вместо испарительно-адиабатического;
- исключение из схемы реакционно-ректификационного аппарата, с заменой его на 2 колонны ректификации и дополнительного проточного реактора;
 - каскад проточных реакторов с колонной разделения.

Однако следует отметить, что данные варианты характеризуются более низкими конверсиями (90-94%) и/или худшими технико-экономическими показателями.

11. Реализация технологий ОАО НИИ "Ярсинтез".

Ниже представлен список предприятий, на которых имеются установки получения высокооктановых компонентов работающих по технологии ОАО НИИ "Ярсинтез".

Предприятие	Мощность, тт/год	Источник сырья	Продукт
"Мажейкю Нафта", г. Мажейкяй, Литва	40 (по МТБЭ) 200 (по ВЭК)	Кат. крекинг	МТБЭ / ВЭК* ЭТБЭ
"Омский НПЗ", г.Омск	35	Кат. крекинг	МТБЭ
ЗАО "Экоойл", г.Омск	до 160	Пиролиз / дегидрирование изобутана	ЕдТМ
"Уфимский ОЛ НПЗ", г.Уфа	35 (по МТБЭ) 100 (по ВЭК)	Кат. крекинг	МТБЭ / ВЭК*
ЗАО "Коримос", г.Москва	Уст-ка МТБЭ - 25 Уст-ка МТАЭ - 30	Кат. крекинг	МТБЭ, МТАЭ
"Сибурхимпром", г.Пермь	25	Пиролиз	МТБЭ
"Тобольский HXK", г. Тобольск	100	Дегидрирование изобутана	МТБЭ
"Нижнекамский НХК", г.Нижнекамск	40	Пиролиз / дегидрирование изобутана	Еатм
ОАО "ЛИНОС", Лисичанск, Украина	35 (по МТБЭ) 100 (по ВЭК)	Кат. крекинг	МТБЭ / ВЭК*
"Славнефть-Ярославнефтеоргсинтез", г. Ярославль	30	Кат. крекинг	ЕдТМ
АО "Петротел-ЛУКОЙЛ" г. Плоешти, Румыния.	Уст-ка МТБЭ - 23 Уст-ка МТАЭ - 20	Кат. крекинг	МТБЭ МТАЭ

^{* -} Высокооктановый эфирсодержащий компонент (смесь МТБЭ, МТАЭ и углеводоро-дов С5).

